enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    When rectified, the curve gives a straight line segment with the same length as the curve's arc length. Arc length s of a logarithmic spiral as a function of its parameter θ . Arc length is the distance between two points along a section of a curve .

  3. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown.. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them.

  4. Haversine formula - Wikipedia

    en.wikipedia.org/wiki/Haversine_formula

    The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.

  5. List of common coordinate transformations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_coordinate...

    Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...

  6. Earth section paths - Wikipedia

    en.wikipedia.org/wiki/Earth_section_paths

    This is a 2-d problem in span{^, ^}, which will be solved with the help of the arc length formula above. If the arc length, s 12 {\displaystyle s_{12}} is given then the problem is to find the corresponding change in the central angle θ 12 {\displaystyle \theta _{12}} , so that θ 2 = θ 1 + θ 12 {\displaystyle \theta _{2}=\theta _{1}+\theta ...

  7. Geographical distance - Wikipedia

    en.wikipedia.org/wiki/Geographical_distance

    The slant distance s (chord length) between two points can be reduced to the arc length on the ellipsoid surface S as: [21] = (+) / / where R is evaluated from Earth's azimuthal radius of curvature and h are ellipsoidal heights are each point. The first term on the right-hand side of the equation accounts for the mean elevation and the second ...

  8. Line element - Wikipedia

    en.wikipedia.org/wiki/Line_element

    The coordinate-independent definition of the square of the line element ds in an n-dimensional Riemannian or Pseudo Riemannian manifold (in physics usually a Lorentzian manifold) is the "square of the length" of an infinitesimal displacement [2] (in pseudo Riemannian manifolds possibly negative) whose square root should be used for computing curve length: = = (,) where g is the metric tensor ...

  9. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, and therefore is occasionally called the Pythagorean distance.