Search results
Results from the WOW.Com Content Network
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe (inside) diameter. f stands for the Darcy friction factor. Its value depends on the flow's Reynolds number Re and on the pipe's relative roughness ε / D.
Surface roughness, often shortened to roughness, is a component of surface finish (surface texture). It is quantified by the deviations in the direction of the normal vector of a real surface from its ideal form. If these deviations are large, the surface is rough; if they are small, the surface is smooth.
The proportionality coefficient is the dimensionless "Darcy friction factor" or "flow coefficient". This dimensionless coefficient will be a combination of geometric factors such as π, the Reynolds number and (outside the laminar regime) the relative roughness of the pipe (the ratio of the roughness height to the hydraulic diameter).
The conversion factor k was chosen so that the values for C were the same as in the Chézy formula for the typical hydraulic slope of S=0.001. [9] The value of k is 0.001 −0.04. [10] Typical C factors used in design, which take into account some increase in roughness as pipe ages are as follows: [11]
Note that the value of this dimensionless factor depends on the pipe diameter D and the roughness of the pipe surface ε. Furthermore, it varies as well with the flow velocity V and on the physical properties of the fluid (usually cast together into the Reynolds number Re). Thus, the friction loss is not precisely proportional to the flow ...
English: The Darcy friction factor versus Reynolds Number for 10 < Re < 10E8 for smooth pipe and a range of values of relative roughness ε/D. Data are from Nikuradse (1932, 1933), Colebrook (1939), and McKeon (2004).
It quantifies the impact of surface irregularities and obstructions on the flow of water. One roughness coefficient is Manning's n-value. [2] Manning's n is used extensively around the world to predict the degree of roughness in channels. The coefficient is critical in hydraulic engineering, floodplain management, and sediment transport studies.