enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Optical path length - Wikipedia

    en.wikipedia.org/wiki/Optical_path_length

    The optical path difference between the paths taken by two identical waves can then be used to find the phase change. Finally, using the phase change, the interference between the two waves can be calculated. Fermat's principle states that the path light takes between two points is the path that has the minimum optical path length.

  3. Bragg's law - Wikipedia

    en.wikipedia.org/wiki/Bragg's_law

    This path difference is (+) (′). The two separate waves will arrive at a point (infinitely far from these lattice planes) with the same phase , and hence undergo constructive interference , if and only if this path difference is equal to any integer value of the wavelength , i.e. n λ = ( A B + B C ) − ( A C ′ ) {\displaystyle n\lambda ...

  4. Two-ray ground-reflection model - Wikipedia

    en.wikipedia.org/wiki/Two-ray_ground-reflection...

    This formula was first obtained by B.A. Vvedenskij. [3] Note that the power decreases with as the inverse fourth power of the distance in the far field, which is explained by the destructive combination of the direct and reflected paths, which are roughly of the same in magnitude and are 180 degrees different in phase.

  5. Coherence length - Wikipedia

    en.wikipedia.org/wiki/Coherence_length

    Multimode helium–neon lasers have a typical coherence length on the order of centimeters, while the coherence length of longitudinally single-mode lasers can exceed 1 km. Semiconductor lasers can reach some 100 m, but small, inexpensive semiconductor lasers have shorter lengths, with one source [4] claiming 20 cm. Singlemode fiber lasers with linewidths of a few kHz can have coherence ...

  6. Phase (waves) - Wikipedia

    en.wikipedia.org/wiki/Phase_(waves)

    Conversely, a phase reversal or phase inversion implies a 180-degree phase shift. [2] When the phase difference () is a quarter of turn (a right angle, +90° = π/2 or −90° = 270° = −π/2 = 3π/2), sinusoidal signals are sometimes said to be in quadrature, e.g., in-phase and quadrature components of a composite signal or even different ...

  7. Path integral formulation - Wikipedia

    en.wikipedia.org/wiki/Path_integral_formulation

    The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics.It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

  8. Optical path - Wikipedia

    en.wikipedia.org/wiki/Optical_path

    Optical path (OP) is the trajectory that a light ray follows as it propagates through an optical medium. The geometrical optical-path length or simply geometrical path length ( GPD ) is the length of a segment in a given OP, i.e., the Euclidean distance integrated along a ray between any two points. [ 1 ]

  9. Sagnac effect - Wikipedia

    en.wikipedia.org/wiki/Sagnac_effect

    This equation is invalid, however, if the light source's path in space does not follow that of the light signals, for example in the standard rotating platform case (FOG) but with a non-circular light path. In this case the phase difference formula necessarily involves the area enclosed by the light path due to Stokes' theorem. [34]