Search results
Results from the WOW.Com Content Network
Calvin–Benson cycle. C 3 carbon fixation is the most common of three metabolic pathways for carbon fixation in photosynthesis, the other two being C 4 and CAM.This process converts carbon dioxide and ribulose bisphosphate (RuBP, a 5-carbon sugar) into two molecules of 3-phosphoglycerate through the following reaction:
This requires the input of one ATP. [citation needed] Thus, of six G3P produced, five are used to make three RuBP (5C) molecules (totaling 15 carbons), with only one G3P available for subsequent conversion to hexose. This requires nine ATP molecules and six NADPH molecules per three CO 2 molecules. The equation of the overall Calvin cycle is ...
A C3 plant uses C3 carbon fixation, one of the three metabolic photosynthesis pathways which also include C4 and CAM (described below). These plants are called "C3" due to the three-carbon compound (3-Phosphoglyceric acid, or 3-PGA) produced by the CO 2 fixation mechanism in these plants.
There are three major metabolic pathways by which photosynthesis is carried out: C 3 photosynthesis, C 4 photosynthesis, and CAM photosynthesis. C 3 photosynthesis is the oldest and most common form. A C3 plant uses the Calvin cycle for the initial steps that incorporate CO 2 into organic material.
C 4 carbon fixation or the Hatch–Slack pathway is one of three known photosynthetic processes of carbon fixation in plants. It owes the names to the 1960s discovery by Marshall Davidson Hatch and Charles Roger Slack. [1] C 4 fixation is an addition to the ancestral and more common C 3 carbon fixation.
A neural pathway connects one part of the nervous system to another using bundles of axons called tracts. The optic tract that extends from the optic nerve is an example of a neural pathway because it connects the eye to the brain; additional pathways within the brain connect to the visual cortex.
Alarm photosynthesis represents a photosynthetic variant to be added to the well-known C4 and CAM pathways. However, alarm photosynthesis, in contrast to these pathways, operates as a biochemical pump that collects carbon from the organ interior (or from the soil) and not from the atmosphere. [35] [36]
The basic unit of the Reactome database is a reaction; reactions are then grouped into causal chains to form pathways [115] The Reactome data model allows us to represent many diverse processes in the human system, including the pathways of intermediary metabolism, regulatory pathways, and signal transduction, and high-level processes, such as ...