Search results
Results from the WOW.Com Content Network
The Gmelin rare earths handbook lists 1522 °C and 1550 °C as two melting points given in the literature, the most recent reference [Handbook on the chemistry and physics of rare earths, vol.12 (1989)] is given with 1529 °C.
Boca Raton, Florida, 2003; Section 6, Fluid Properties; Critical Constants. Also agrees with Celsius values from Section 4: Properties of the Elements and Inorganic Compounds, Melting, Boiling, Triple, and Critical Point Temperatures of the Elements Estimated accuracy for Tc and Pc is indicated by the number of digits.
The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.
This list is sorted by boiling point of gases in ascending order, but can be sorted on different values. "sub" and "triple" refer to the sublimation point and the triple point, which are given in the case of a substance that sublimes at 1 atm; "dec" refers to decomposition. "~" means approximately.
If sodium of high purity is required, it can be distilled once or several times. The market for sodium is volatile due to the difficulty in its storage and shipping; it must be stored under a dry inert gas atmosphere or anhydrous mineral oil to prevent the formation of a surface layer of sodium oxide or sodium superoxide. [69]
Of all metals in pure form, tungsten has the highest melting point (3,422 °C, 6,192 °F), lowest vapor pressure (at temperatures above 1,650 °C, 3,000 °F), and the highest tensile strength. [26] Although carbon remains solid at higher temperatures than tungsten, carbon sublimes at atmospheric pressure instead of melting, so it has no melting ...
FLiNaK is the name of the ternary eutectic alkaline metal fluoride salt mixture LiF-NaF-KF (46.5-11.5-42 mol %). [1] It has a melting point of 462 °C [ 2 ] and a boiling point of 1570 °C. It is used as electrolyte for the electroplating of refractory metals and compounds like titanium , tantalum , hafnium , zirconium and their borides . [ 3 ]
This page provides supplementary data about the noble gases, which were excluded from the main article to conserve space and preserve focus. Oganesson mostly not included due to the amount of research known about it.