Search results
Results from the WOW.Com Content Network
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...
MurmurHashAligned2 (32-bit, x86)—Slower, but does aligned reads (safer on some platforms). MurmurHash64A (64-bit, x64)—The original 64-bit version. Optimized for 64-bit arithmetic. MurmurHash64B (64-bit, x86)—A 64-bit version optimized for 32-bit platforms. It is not a true 64-bit hash due to insufficient mixing of the stripes. [10]
An Adler-32 checksum is obtained by calculating two 16-bit checksums A and B and concatenating their bits into a 32-bit integer. A is the sum of all bytes in the stream plus one, and B is the sum of the individual values of A from each step. At the beginning of an Adler-32 run, A is initialized to 1, B to 0.
The meaning of "small enough" depends on the size of the type that is used as the hashed value. For example, in Java, the hash code is a 32-bit integer. Thus the 32-bit integer Integer and 32-bit floating-point Float objects can simply use the value directly, whereas the 64-bit integer Long and 64-bit floating-point Double cannot.
A perfect hash function for the four names shown A minimal perfect hash function for the four names shown. In computer science, a perfect hash function h for a set S is a hash function that maps distinct elements in S to a set of m integers, with no collisions. In mathematical terms, it is an injective function.
Fowler–Noll–Vo (or FNV) is a non-cryptographic hash function created by Glenn Fowler, Landon Curt Noll, and Kiem-Phong Vo.. The basis of the FNV hash algorithm was taken from an idea sent as reviewer comments to the IEEE POSIX P1003.2 committee by Glenn Fowler and Phong Vo in 1991.
When the data word is divided into 32-bit blocks, two 32-bit sums result and are combined into a 64-bit Fletcher checksum. Usually, the second sum will be multiplied by 2 32 and added to the simple checksum, effectively stacking the sums side-by-side in a 64-bit word with the simple checksum at the least significant end. This algorithm is then ...
BLAKE repeatedly combines an 8-word hash value with 16 message words, truncating the ChaCha result to obtain the next hash value. BLAKE-256 and BLAKE-224 use 32-bit words and produce digest sizes of 256 bits and 224 bits, respectively, while BLAKE-512 and BLAKE-384 use 64-bit words and produce digest sizes of 512 bits and 384 bits, respectively.