enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Induction, bounding and least number principles - Wikipedia

    en.wikipedia.org/wiki/Induction,_bounding_and...

    In first-order arithmetic, the induction principles, bounding principles, and least number principles are three related families of first-order principles, which may or may not hold in nonstandard models of arithmetic. These principles are often used in reverse mathematics to calibrate the axiomatic strength of theorems.

  3. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    The validity of this method can be verified from the usual principle of mathematical induction. Using mathematical induction on the statement P ( n ) defined as " Q ( m ) is false for all natural numbers m less than or equal to n ", it follows that P ( n ) holds for all n , which means that Q ( n ) is false for every natural number n .

  4. Peano axioms - Wikipedia

    en.wikipedia.org/wiki/Peano_axioms

    The ninth, final, axiom is a second-order statement of the principle of mathematical induction over the natural numbers, which makes this formulation close to second-order arithmetic. A weaker first-order system is obtained by explicitly adding the addition and multiplication operation symbols and replacing the second-order induction axiom with ...

  5. Bar induction - Wikipedia

    en.wikipedia.org/wiki/Bar_induction

    Bar induction is a reasoning principle used in intuitionistic mathematics, introduced by L. E. J. Brouwer. Bar induction's main use is the intuitionistic derivation of the fan theorem, a key result used in the derivation of the uniform continuity theorem. It is also useful in giving constructive alternatives to other classical results.

  6. Epsilon-induction - Wikipedia

    en.wikipedia.org/wiki/Epsilon-induction

    In set theory, -induction, also called epsilon-induction or set-induction, is a principle that can be used to prove that all sets satisfy a given property. Considered as an axiomatic principle, it is called the axiom schema of set induction. The principle implies transfinite induction and recursion.

  7. Transfinite induction - Wikipedia

    en.wikipedia.org/wiki/Transfinite_induction

    Transfinite induction requires proving a base case (used for 0), a successor case (used for those ordinals which have a predecessor), and a limit case (used for ordinals which don't have a predecessor). Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers.

  8. Solomonoff's theory of inductive inference - Wikipedia

    en.wikipedia.org/wiki/Solomonoff's_theory_of...

    The proof of this is derived from a game between the induction and the environment. Essentially, any computable induction can be tricked by a computable environment, by choosing the computable environment that negates the computable induction's prediction. This fact can be regarded as an instance of the no free lunch theorem.

  9. Proof by infinite descent - Wikipedia

    en.wikipedia.org/wiki/Proof_by_infinite_descent

    In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]