Search results
Results from the WOW.Com Content Network
The parity-check matrix of a Hamming code is constructed by listing all columns of length r that are non-zero, which means that the dual code of the Hamming code is the shortened Hadamard code, also known as a Simplex code. The parity-check matrix has the property that any two columns are pairwise linearly independent.
then resemblance to rows 1, 2, and 4 of the code generator matrix (G) below will also be evident. So, by picking the parity bit coverage correctly, all errors with a Hamming distance of 1 can be detected and corrected, which is the point of using a Hamming code.
Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]
In the extended binary Golay code, all code words have Hamming weights of 0, 8, 12, 16, or 24. Code words of weight 8 are called octads and code words of weight 12 are called dodecads. Octads of the code G 24 are elements of the S(5,8,24) Steiner system. There are 759 = 3 × 11 × 23 octads and 759 complements thereof.
For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...
RM(m − 1, m) codes are single parity check codes of length N = 2 m, rate = and minimum distance =. RM(m − 2, m) codes are the family of extended Hamming codes of length N = 2 m with minimum distance =. [7]
The American mathematician Richard Hamming pioneered this field in the 1940s and invented the first error-correcting code in 1950: the Hamming (7,4) code. [ 5 ] FEC can be applied in situations where re-transmissions are costly or impossible, such as one-way communication links or when transmitting to multiple receivers in multicast .
The Hamming code H(8,4) is a binary code of length 8 and rank 4; that is, it is a 4-dimensional subspace of the finite vector space (F 2) 8. Writing elements of ( F 2 ) 8 as 8-bit integers in hexadecimal , the code H (8,4) can by given explicitly as the set