Search results
Results from the WOW.Com Content Network
In symmetric key cryptography, both parties must possess a secret key which they must exchange prior to using any encryption. Distribution of secret keys has been problematic until recently, because it involved face-to-face meeting, use of a trusted courier, or sending the key through an existing encryption channel. The first two are often ...
Symmetric-key encryption: the same key is used for both encryption and decryption. Symmetric-key algorithms [a] are algorithms for cryptography that use the same cryptographic keys for both the encryption of plaintext and the decryption of ciphertext. The keys may be identical, or there may be a simple transformation to go between the two keys. [1]
Table compares implementations of block ciphers. Block ciphers are defined as being deterministic and operating on a set number of bits (termed a block) using a symmetric key. Each block cipher can be broken up into the possible key sizes and block cipher modes it can be run with.
A key can directly be generated by using the output of a Random Bit Generator (RBG), a system that generates a sequence of unpredictable and unbiased bits. [10] A RBG can be used to directly produce either a symmetric key or the random output for an asymmetric key pair generation.
Encrypts the symmetric key under the key encapsulation scheme, using Alice's public key. Sends both of these ciphertexts to Alice. To decrypt this hybrid ciphertext, Alice does the following: Uses her private key to decrypt the symmetric key contained in the key encapsulation segment. Uses this symmetric key to decrypt the message contained in ...
Asymmetric keys differ from symmetric keys in that the algorithms use separate keys for encryption and decryption, while a symmetric key’s algorithm uses a single key for both processes. Because multiple keys are used with an asymmetric algorithm, the process takes longer to produce than a symmetric key algorithm would.
Key /Config-authentication is used to solve the problem of authenticating the keys of a person (say "person A") that some other person ("person B") is talking to or trying to talk to. In other words, it is the process of assuring that the key of "person A", held by "person B", does in fact belong to "person A" and vice versa.
Key generation, distribution and management are critical for those applications. A stream cipher makes use of a much smaller and more convenient key such as 128 bits. Based on this key, it generates a pseudorandom keystream which can be combined with the plaintext digits in a similar fashion to the one-time pad. However, this comes at a cost.