enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Point reflection - Wikipedia

    en.wikipedia.org/wiki/Point_reflection

    In mathematics, reflection through the origin refers to the point reflection of Euclidean space R n across the origin of the Cartesian coordinate system. Reflection through the origin is an orthogonal transformation corresponding to scalar multiplication by − 1 {\displaystyle -1} , and can also be written as − I {\displaystyle -I} , where I ...

  3. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    Point Q is the reflection of point P through the line AB. In a plane (or, respectively, 3-dimensional) geometry, to find the reflection of a point drop a perpendicular from the point to the line (plane) used for reflection, and extend it the same distance on the other side. To find the reflection of a figure, reflect each point in the figure.

  4. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    Reflection. Reflections, or mirror isometries, denoted by F c,v, where c is a point in the plane and v is a unit vector in R 2.(F is for "flip".) have the effect of reflecting the point p in the line L that is perpendicular to v and that passes through c.

  5. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    Then reflect P′ to its image P′′ on the other side of line L 2. If lines L 1 and L 2 make an angle θ with one another, then points P and P′′ will make an angle 2θ around point O, the intersection of L 1 and L 2. I.e., angle ∠ POP′′ will measure 2θ. A pair of rotations about the same point O will be equivalent to another ...

  6. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    A reflection about a line or plane that does not go through the origin is not a linear transformation — it is an affine transformation — as a 4×4 affine transformation matrix, it can be expressed as follows (assuming the normal is a unit vector): [′ ′ ′] = [] [] where = for some point on the plane, or equivalently, + + + =.

  7. Plane-based geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Plane-based_geometric_algebra

    L is a 2-reflection and is a 3-reflection, so taking their geometric product PL in some sense produces a 5-reflection; however, as in the picture below, two of these reflections cancel, leaving a 3-reflection (sometimes known as a rotoreflection). In the plane-based geometric algebra notation, this rotoreflection can be thought of as a planar ...

  8. Homothety - Wikipedia

    en.wikipedia.org/wiki/Homothety

    k = −1 corresponds to a point reflection at point S Homothety of a pyramid. In mathematics, a homothety (or homothecy, or homogeneous dilation) is a transformation of an affine space determined by a point S called its center and a nonzero number k called its ratio, which sends point X to a point X ′ by the rule, [1]

  9. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.