Search results
Results from the WOW.Com Content Network
In aerodynamics, aerodynamic drag, also known as air resistance, is the fluid drag force that acts on any moving solid body in the direction of the air's freestream flow. [ 23 ] From the body's perspective (near-field approach), the drag results from forces due to pressure distributions over the body surface, symbolized D p r {\displaystyle D ...
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
When an airfoil moves relative to the air, it generates an aerodynamic force determined by the velocity of relative motion, and the angle of attack. This aerodynamic force is commonly resolved into two components, both acting through the center of pressure: [3]: 14 [1]: § 5.3
Drag, or air resistance, is a force that opposes motion. Since the thrust is a force that provides "forward motion" and, lift one that produces "upward motion", the drag opposes both of these forces. Air resistance is friction between the air itself and the moving object (in this case the aircraft).
Ballistic coefficient (BC) (aerodynamics) (units of kg/m 2) - A measure of a body's ability to overcome air resistance in flight. BC is a function of mass, diameter, and drag coefficient. BC is a function of mass, diameter, and drag coefficient.
It is the force which makes an object move over the surface by overcoming all the resisting forces like friction, normal loads (load acting on the tiers in negative Z axis), air resistance, rolling resistance, etc.
Aerodynamics (Ancient Greek: ἀήρ aero (air) + Ancient Greek: δυναμική (dynamics)) is the study of the motion of air, particularly when affected by a solid object, such as an airplane wing. [1] It involves topics covered in the field of fluid dynamics and its subfield of gas dynamics, and is an important domain of study in aeronautics.
The equation is precise – it simply provides the definition of (drag coefficient), which varies with the Reynolds number and is found by experiment. Of particular importance is the u 2 {\displaystyle u^{2}} dependence on flow velocity, meaning that fluid drag increases with the square of flow velocity.