Search results
Results from the WOW.Com Content Network
Liquid phase sintering is a sintering technique that uses a liquid phase to accelerate the interparticle bonding of the solid phase. In addition to rapid initial particle rearrangement due to capillary forces, mass transport through liquid is generally orders of magnitude faster than through solid, enhancing the diffusional mechanisms that drive densification. [1]
In biology the term 'condensation' is used much more broadly and can also refer to liquid–liquid phase separation to form colloidal emulsions or liquid crystals within cells, and liquid–solid phase separation to form gels, [1] sols, or suspensions within cells as well as liquid-to-solid phase transitions such as DNA condensation during ...
Liquid phase sintering is the process of adding an additive to the powder which will melt before the matrix phase. The process of liquid phase sintering has three stages: rearrangement – As the liquid melts capillary action will pull the liquid into pores and also cause grains to rearrange into a more favorable packing arrangement.
Liquid-liquid phase separation (LLPS) is well defined in the Biomolecular condensate page. LLPS databases cover different aspects of LLPS phenomena, ranging from cellular location of the Membraneless Organelles (MLOs) to the role of a particular protein/region forming the condensate state.
Coacervate droplets dispersed in a dilute phase. Coacervate (/ k oʊ ə ˈ s ɜːr v ə t / or / k oʊ ˈ æ s ər v eɪ t /) is an aqueous phase rich in macromolecules such as synthetic polymers, proteins or nucleic acids. It forms through liquid-liquid phase separation (LLPS), leading to a dense phase in thermodynamic equilibrium with a ...
Membrane distillation (MD) is a thermally driven separation process in which separation is driven by phase change.A hydrophobic membrane presents a barrier for the liquid phase, allowing the vapour phase (e.g. water vapour) to pass through the membrane's pores. [1]
The VLS mechanism circumvents this by introducing a catalytic liquid alloy phase which can rapidly adsorb a vapor to supersaturation levels, and from which crystal growth can subsequently occur from nucleated seeds at the liquid–solid interface. The physical characteristics of nanowires grown in this manner depend, in a controllable way, upon ...
In materials science, liquefaction [1] is a process that generates a liquid from a solid or a gas [2] or that generates a non-liquid phase which behaves in accordance with fluid dynamics. [3] It occurs both naturally and artificially. As an example of the latter, a "major commercial application of liquefaction is the liquefaction of air to ...