Search results
Results from the WOW.Com Content Network
PPLs often extend from a basic language. For instance, Turing.jl [12] is based on Julia, Infer.NET is based on .NET Framework, [13] while PRISM extends from Prolog. [14] However, some PPLs, such as WinBUGS, offer a self-contained language that maps closely to the mathematical representation of the statistical models, with no obvious origin in another programming language.
The Birnbaum–Saunders distribution, also known as the fatigue life distribution, is a probability distribution used extensively in reliability applications to model failure times. The chi distribution. The noncentral chi distribution; The chi-squared distribution, which is the sum of the squares of n independent Gaussian random variables.
A discrete probability distribution is the probability distribution of a random variable that can take on only a countable number of values [15] (almost surely) [16] which means that the probability of any event can be expressed as a (finite or countably infinite) sum: = (=), where is a countable set with () =.
In probability theory and statistics, a categorical distribution (also called a generalized Bernoulli distribution, multinoulli distribution [1]) is a discrete probability distribution that describes the possible results of a random variable that can take on one of K possible categories, with the probability of each category separately specified.
A random sample can be thought of as a set of objects that are chosen randomly. More formally, it is "a sequence of independent, identically distributed (IID) random data points." In other words, the terms random sample and IID are synonymous. In statistics, "random sample" is the typical terminology, but in probability, it is more common to ...
A diagram of an alias table that represents the probability distribution〈0.25, 0.3, 0.1, 0.2, 0.15〉 In computing, the alias method is a family of efficient algorithms for sampling from a discrete probability distribution, published in 1974 by Alastair J. Walker.
The Johnson's S U-distribution is a four-parameter family of probability distributions first investigated by N. L. Johnson in 1949. [ 1 ] [ 2 ] Johnson proposed it as a transformation of the normal distribution : [ 1 ]
The distributional learning theory or learning of probability distribution is a framework in computational learning theory.It has been proposed from Michael Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert Schapire and Linda Sellie in 1994 [1] and it was inspired from the PAC-framework introduced by Leslie Valiant.