Search results
Results from the WOW.Com Content Network
Stereographic projection of the unit sphere from the north pole onto the plane z = 0, shown here in cross section. The unit sphere S 2 in three-dimensional space R 3 is the set of points (x, y, z) such that x 2 + y 2 + z 2 = 1.
The stereographic projection, also known as the planisphere projection or the azimuthal conformal projection, is a conformal map projection whose use dates back to antiquity. Like the orthographic projection and gnomonic projection, the stereographic projection is an azimuthal projection, and when on a sphere, also a perspective projection.
Gott, Goldberg and Vanderbei’s double-sided disk map was designed to minimize all six types of map distortions. Not properly "a" map projection because it is on two surfaces instead of one, it consists of two hemispheric equidistant azimuthal projections back-to-back. [5] [6] [7] 1879 Peirce quincuncial: Other Conformal Charles Sanders Peirce
Stereographic projection of a 3-sphere (again removing the north pole) maps to three-space in the same manner. (Notice that, since stereographic projection is conformal, round spheres are sent to round spheres or to planes.) A somewhat different way to think of the one-point compactification is via the exponential map. Returning to our picture ...
As the name indicates, the UPS system uses a stereographic projection. Specifically, the projection used in the system is a secant version based on an elliptical model of the earth. The scale factor at each pole is adjusted to 0.994 so that the latitude of true scale is 81.11451786859362545° (about 81° 06' 52.3") North and South.
Stereographic projection of a pole. The upper sphere is projected on a plane using the stereographic projection. Consider the (x,y) plane of the reference basis; its trace on the sphere is the equator of the sphere. We draw a line joining the South pole with the pole of interest P.
A stereographic projection of a Clifford torus performing a simple rotation Topologically a rectangle is the fundamental polygon of a torus, with opposite edges sewn together. In geometric topology, the Clifford torus is the simplest and most symmetric flat embedding of the Cartesian product of two circles S 1 a and S 1
The inverses of these two stereographic projections are maps from the complex plane to the sphere. The first inverse covers the sphere except the point (,,), and the second covers the sphere except the point (,,).