Search results
Results from the WOW.Com Content Network
The concepts of successor, addition, multiplication and exponentiation are all hyperoperations; the successor operation (producing x + 1 from x) is the most primitive, the addition operator specifies the number of times 1 is to be added to itself to produce a final value, multiplication specifies the number of times a number is to be added to ...
Any floating-point type can be modified with complex, and is then defined as a pair of floating-point numbers. Note that C99 and C++ do not implement complex numbers in a code-compatible way – the latter instead provides the class std:: complex. All operations on complex numbers are defined in the <complex.h> header.
For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8. Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = b e mod m = d −e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m).
*/ /* This implementation does not implement composite functions, functions with a variable number of arguments, or unary operators. */ while there are tokens to be read: read a token if the token is: - a number: put it into the output queue - a function: push it onto the operator stack - an operator o 1: while ( there is an operator o 2 at the ...
The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...
The successor function is part of the formal language used to state the Peano axioms, which formalise the structure of the natural numbers.In this formalisation, the successor function is a primitive operation on the natural numbers, in terms of which the standard natural numbers and addition are defined. [1]
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation.