Search results
Results from the WOW.Com Content Network
Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.
Theorem: Every smooth manifold admits a (non-canonical) Riemannian metric. [13] This is a fundamental result. Although much of the basic theory of Riemannian metrics can be developed using only that a smooth manifold is a locally Euclidean topological space, for this result it is necessary to use that smooth manifolds are Hausdorff and paracompact.
There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique (i.e. there are smooth 4-manifolds which are homeomorphic but not diffeomorphic). 4-manifolds are important in physics because in general relativity, spacetime is modeled as a pseudo-Riemannian 4-manifold.
In particular, if is a smooth manifold and is a smooth vector field, one is interested in finding integral curves to . More precisely, given p ∈ M {\displaystyle p\in M} one is interested in curves γ p : R → M {\displaystyle \gamma _{p}:\mathbb {R} \to M} such that:
Pages in category "Smooth manifolds" The following 19 pages are in this category, out of 19 total. ... This page was last edited on 4 February 2012, ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Let :, (,) be a (left) group action of a Lie group on a smooth manifold ; it is called a Lie group action (or smooth action) if the map is differentiable. Equivalently, a Lie group action of G {\displaystyle G} on M {\displaystyle M} consists of a Lie group homomorphism G → D i f f ( M ) {\displaystyle G\to \mathrm {Diff} (M)} .