Ads
related to: archimedes pi calculation problems and answers sheet worksheet
Search results
Results from the WOW.Com Content Network
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.
The ratio of the volume of a sphere to the volume of its circumscribed cylinder is 2:3, as was determined by Archimedes. The principal formulae derived in On the Sphere and Cylinder are those mentioned above: the surface area of the sphere, the volume of the contained ball, and surface area and volume of the cylinder.
Through proof by contradiction (reductio ad absurdum), he could give answers to problems to an arbitrary degree of accuracy, while specifying the limits within which the answer lay. This technique is known as the method of exhaustion , and he employed it to approximate the areas of figures and the value of π .
For most numerical calculations involving π, a handful of digits provide sufficient precision. According to Jörg Arndt and Christoph Haenel, thirty-nine digits are sufficient to perform most cosmological calculations, because that is the accuracy necessary to calculate the circumference of the observable universe with a
The calculations Archimedes used to approximate the area numerically were laborious, and he stopped with a polygon of 96 sides. A faster method uses ideas of Willebrord Snell ( Cyclometricus , 1621), further developed by Christiaan Huygens ( De Circuli Magnitudine Inventa , 1654), described in Gerretsen & Verdenduin (1983 , pp. 243–250).
Archimedes, in his Measurement of a Circle, created the first algorithm for the calculation of π based on the idea that the perimeter of any (convex) polygon inscribed in a circle is less than the circumference of the circle, which, in turn, is less than the perimeter of any circumscribed polygon. He started with inscribed and circumscribed ...
For premium support please call: 800-290-4726 more ways to reach us
Greek mathematics [a] reached its acme during the Hellenistic and early Roman periods, and much of the work represented by authors such as Euclid (fl. 300 BC), Archimedes (c. 287–212 BC), Apollonius (c. 240–190 BC), Hipparchus (c. 190–120 BC), and Ptolemy (c. 100–170 AD) was of a very advanced level and rarely mastered outside a small ...
Ads
related to: archimedes pi calculation problems and answers sheet worksheet