enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cellular automaton - Wikipedia

    en.wikipedia.org/wiki/Cellular_automaton

    A special class of cellular automata are totalistic cellular automata. The state of each cell in a totalistic cellular automaton is represented by a number (usually an integer value drawn from a finite set), and the value of a cell at time t depends only on the sum of the values of the cells in its neighborhood (possibly including the cell ...

  3. Von Neumann cellular automaton - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann_cellular_automaton

    Initially, much of the cell-space, the universe of the cellular automaton, is "blank", consisting of cells in the ground state U. When given an input excitation from a neighboring ordinary- or special transmission state, the cell in the ground state becomes "sensitised", transitioning through a series of states before finally "resting" at a ...

  4. Rule 30 - Wikipedia

    en.wikipedia.org/wiki/Rule_30

    Rule 30 is an elementary cellular automaton introduced by Stephen Wolfram in 1983. [2] Using Wolfram's classification scheme , Rule 30 is a Class III rule, displaying aperiodic, chaotic behaviour. This rule is of particular interest because it produces complex, seemingly random patterns from simple, well-defined rules.

  5. Rule 110 - Wikipedia

    en.wikipedia.org/wiki/Rule_110

    The Rule 110 cellular automaton (often called simply Rule 110) [a] is an elementary cellular automaton with interesting behavior on the boundary between stability and chaos. In this respect, it is similar to Conway's Game of Life .

  6. Second-order cellular automaton - Wikipedia

    en.wikipedia.org/.../Second-order_cellular_automaton

    If we view the two states as Boolean values, this correspondence between ordinary and second-order automaton can be described simply: the state of a cell of the second-order automaton at time t + 1 is the exclusive or of its state at time t − 1 with the state that the ordinary cellular automaton rule would compute for it. [4]

  7. Elementary cellular automaton - Wikipedia

    en.wikipedia.org/wiki/Elementary_cellular_automaton

    In mathematics and computability theory, an elementary cellular automaton is a one-dimensional cellular automaton where there are two possible states (labeled 0 and 1) and the rule to determine the state of a cell in the next generation depends only on the current state of the cell and its two immediate neighbors.

  8. Reversible cellular automaton - Wikipedia

    en.wikipedia.org/wiki/Reversible_cellular_automaton

    A cellular automaton is defined by its cells (often a one- or two-dimensional array), a finite set of values or states that can go into each cell, a neighborhood associating each cell with a finite set of nearby cells, and an update rule according to which the values of all cells are updated, simultaneously, as a function of the values of their neighboring cells.

  9. Life without Death - Wikipedia

    en.wikipedia.org/wiki/Life_without_Death

    Still life patterns are common in Life without Death: if there is no dead cell with three live neighbors, a pattern will remain unchanging for all future time steps. . However, because a cell, once alive, remains alive, the set of live cells grows monotonically throughout the evolution of a pattern, and there can be no oscillators (patterns that cycle through a repeating sequence of shapes ...