Ads
related to: complex numbers kuta pdf worksheet downloadkutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.
The Galois group Gal(Q CM /Q) has a center generated by an element of order 2 (complex conjugation) and the quotient by its center is the group Gal(Q R /Q). If V is a complex abelian variety of dimension n, then any abelian algebra F of endomorphisms of V has rank at most 2n over Z. If it has rank 2n and V is simple then F is an order in a CM ...
In mathematical physics, a Grassmann number, named after Hermann Grassmann (also called an anticommuting number or supernumber), is an element of the exterior algebra of a complex vector space. [1] The special case of a 1-dimensional algebra is known as a dual number .
Geometry of Complex Numbers is an undergraduate textbook on geometry, whose topics include circles, the complex plane, inversive geometry, and non-Euclidean geometry. It was written by Hans Schwerdtfeger , and originally published in 1962 as Volume 13 of the Mathematical Expositions series of the University of Toronto Press .
The multiplication of two complex numbers can be expressed more easily in polar coordinates: the magnitude or modulus of the product is the product of the two absolute values, or moduli, and the angle or argument of the product is the sum of the two angles, or arguments. In particular, multiplication by a complex number of modulus 1 acts as a ...
If one takes L to be the splitting field of X 3 − a over Q, where a is not a cube in the rational numbers, then L contains a subfield K with three cube roots of 1; that is because if α and β are roots of the cubic polynomial, we shall have (α/β) 3 =1 and the cubic is a separable polynomial.
In mathematics, the complexification of a vector space V over the field of real numbers (a "real vector space") yields a vector space V C over the complex number field, obtained by formally extending the scaling of vectors by real numbers to include their scaling ("multiplication") by complex numbers.
The quotient of the complex plane C by the lattice containing all Eisenstein integers is a complex torus of real dimension 2. This is one of two tori with maximal symmetry among all such complex tori. [citation needed] This torus can be obtained by identifying each of the three pairs of opposite edges of a regular hexagon.
Ads
related to: complex numbers kuta pdf worksheet downloadkutasoftware.com has been visited by 10K+ users in the past month