Ads
related to: solving for domain algebraicallyeducation.com has been visited by 100K+ users in the past month
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- 20,000+ Worksheets
Browse by grade or topic to find
the perfect printable worksheet.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Guided Lessons
Search results
Results from the WOW.Com Content Network
In algebra, a domain is a nonzero ring in which ab = 0 implies a = 0 or b = 0. [1] (Sometimes such a ring is said to "have the zero-product property".) Equivalently, a domain is a ring in which 0 is the only left zero divisor (or equivalently, the only right zero divisor). A commutative domain is called an integral domain.
The term domain is also commonly used in a different sense in mathematical analysis: a domain is a non-empty connected open set in a topological space. In particular, in real and complex analysis , a domain is a non-empty connected open subset of the real coordinate space R n {\displaystyle \mathbb {R} ^{n}} or the complex coordinate space C n ...
In complex analysis, a complex domain (or simply domain) is any connected open subset of the complex plane C. For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth. Often, a complex domain serves as the domain of definition for a holomorphic function.
More generally, linear algebra is effective on a principal ideal domain if there are algorithms for addition, subtraction and multiplication, and Solving equations of the form ax = b , that is, testing whether a is a divisor of b , and, if this is the case, computing the quotient a / b ,
with domain, the range of , sometimes denoted or (), [4] may refer to the codomain or target set (i.e., the set into which all of the output of is constrained to fall), or to (), the image of the domain of under (i.e., the subset of consisting of all actual outputs of ). The image of a function is always a subset of the codomain of the ...
A Noetherian integral domain is a UFD if and only if every height 1 prime ideal is principal (a proof is given at the end). Also, a Dedekind domain is a UFD if and only if its ideal class group is trivial. In this case, it is in fact a principal ideal domain. In general, for an integral domain A, the following conditions are equivalent: A is a UFD.
Ads
related to: solving for domain algebraicallyeducation.com has been visited by 100K+ users in the past month