Search results
Results from the WOW.Com Content Network
Protein domains. The two shown protein structures share a common domain (maroon), the PH domain, which is involved in phosphatidylinositol (3,4,5)-trisphosphate binding. Proteins are frequently described as consisting of several structural units. These units include domains, motifs, and folds.
In general, protein structures are classified into four levels: primary (sequences), secondary (local conformation of the polypeptide chain), tertiary (three-dimensional structure of the protein fold), and quaternary (association of multiple polypeptide structures). Structural bioinformatics mainly addresses interactions among structures taking ...
Protein before and after folding Results of protein folding. Protein folding is the physical process by which a protein, after synthesis by a ribosome as a linear chain of amino acids, changes from an unstable random coil into a more ordered three-dimensional structure. This structure permits the protein to become biologically functional. [1]
A specific nonlinear optical technique called second-harmonic generation (SHG) has been recently applied to the study of conformational change in proteins. [4] In this method, a second-harmonic-active probe is placed at a site that undergoes motion in the protein by mutagenesis or non-site-specific attachment, and the protein is adsorbed or ...
Protein quaternary structure [a] is the fourth (and highest) classification level of protein structure.Protein quaternary structure refers to the structure of proteins which are themselves composed of two or more smaller protein chains (also referred to as subunits).
Biomolecular structure is the intricate folded, three-dimensional shape that is formed by a molecule of protein, DNA, or RNA, and that is important to its function.The structure of these molecules may be considered at any of several length scales ranging from the level of individual atoms to the relationships among entire protein subunits.
The model proposes that multimeric proteins exist in two separate states, T and R. Upon ligand binding, equilibrium between the two states shifts towards the R state, thought to result from protein conformation changes due to ligand binding. The model is useful in describing hemoglobin's sigmoidal binding curve. [4]
Levinthal's paradox is a thought experiment in the field of computational protein structure prediction; protein folding seeks a stable energy configuration. An algorithmic search through all possible conformations to identify the minimum energy configuration (the native state) would take an immense duration; however in reality protein folding happens very quickly, even in the case of the most ...