Search results
Results from the WOW.Com Content Network
Kirchhoff's circuit laws were originally obtained from experimental results. However, the current law can be viewed as an extension of the conservation of charge, since charge is the product of current and the time the current has been flowing. If the net charge in a region is constant, the current law will hold on the boundaries of the region.
Kirchhoff's laws, named after Gustav Kirchhoff, may refer to: Kirchhoff's circuit laws in electrical engineering; Kirchhoff's law of thermal radiation; Kirchhoff equations in fluid dynamics; Kirchhoff's three laws of spectroscopy; Kirchhoff's law of thermochemistry; Kirchhoff's theorem about the number of spanning trees in a graph
Kirchhoff's current law is the basis of nodal analysis. In electric circuits analysis, nodal analysis, node-voltage analysis, or the branch current method is a method of determining the voltage (potential difference) between "nodes" (points where elements or branches connect) in an electrical circuit in terms of the branch currents.
Gustav Robert Kirchhoff (German: [ˈgʊs.taf ˈkɪʁçhɔf]; 12 March 1824 – 17 October 1887) was a German physicist, mathematican and chemist who contributed to the fundamental understanding of electrical circuits, spectroscopy and the emission of black-body radiation by heated objects.
Kirchhoff, Kirchoff or Kirchhoffer is a German surname. Notable people with the surname include: Notable people with the surname include: Adolf Kirchhoff (1826–1908), German classical scholar and epigrapher
Kirchhoff's laws: Electronics, thermodynamics: Gustav Kirchhoff: Kopp's law: Thermodynamics: Hermann Franz Moritz Kopp: Larmor formula: Physics Joseph Larmor: Leidenfrost effect: Physics: Johann Gottlob Leidenfrost: Lagrangian point Lagrange reversion theorem Lagrange polynomial Lagrange's four-square theorem Lagrange's theorem Lagrange's ...
To satisfy the Kirchhoff's second laws (2), we should end up with 0 about each loop at the steady-state solution. If the actual sum of our head loss is not equal to 0, then we will adjust all the flows in the loop by an amount given by the following formula, where a positive adjustment is in the clockwise direction.
The same phenomena makes the absorptivity of incoming radiation less than 1 and equal to emissivity (Kirchhoff's law). When radiation has not passed far enough through a homogeneous medium for emission and absorption to reach thermodynamic equilibrium or when the medium changes with distance, Planck's Law and the Stefan-Boltzmann equation do ...