Search results
Results from the WOW.Com Content Network
For example, the term 2x in x 2 + 2x + 1 is a linear term in a quadratic polynomial. The polynomial 0, which may be considered to have no terms at all, is called the zero polynomial . Unlike other constant polynomials, its degree is not zero.
Then, f(x)g(x) = 4x 2 + 4x + 1 = 1. Thus deg(f⋅g) = 0 which is not greater than the degrees of f and g (which each had degree 1). Since the norm function is not defined for the zero element of the ring, we consider the degree of the polynomial f(x) = 0 to also be undefined so that it follows the rules of a norm in a Euclidean domain.
The solution set for the equations x − y = −1 and 3x + y = 9 is the single point (2, 3). A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5]
The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...
One particular solution is x = 0, y = 0, z = 0. Two other solutions are x = 3, y = 6, z = 1, and x = 8, y = 9, z = 2. There is a unique plane in three-dimensional space which passes through the three points with these coordinates, and this plane is the set of all points whose coordinates are solutions of the equation.
The graph of the logarithm to base 2 crosses the x axis (horizontal axis) at 1 and passes through the points with coordinates (2, 1), (4, 2), and (8, 3). For example, log 2 (8) = 3, because 2 3 = 8. The graph gets arbitrarily close to the y axis, but does not meet or intersect it.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Let us consider a polynomial P(x) of degree less than n(m + 1) with indeterminate coefficients; that is, the coefficients of P(x) are n(m + 1) new variables. Then, by writing the constraints that the interpolating polynomial must satisfy, one gets a system of n(m + 1) linear equations in n(m + 1) unknowns.