Search results
Results from the WOW.Com Content Network
Hydrobromic acid forms an azeotrope with boiling point 124.3 °C at 47.63 g HBr per 100 g solution; ... For example, niobium(V) oxide ... Bromic acid is a strong acid.
Hydrobromic acid is an aqueous solution of hydrogen bromide.It is a strong acid formed by dissolving the diatomic molecule hydrogen bromide (HBr) in water. "Constant boiling" hydrobromic acid is an aqueous solution that distills at 124.3 °C (255.7 °F) and contains 47.6% HBr by mass, which is 8.77 mol/L. Hydrobromic acid is one of the strongest mineral acids known.
Hydrogen bromide is the inorganic compound with the formula HBr.It is a hydrogen halide consisting of hydrogen and bromine. A colorless gas, it dissolves in water, forming hydrobromic acid, which is saturated at 68.85% HBr by weight at room temperature.
Bromic acid, also known as hydrogen bromate, is an oxoacid with the molecular formula HBrO 3. It only exists in aqueous solution. [1] [2] It is a colorless solution that turns yellow at room temperature as it decomposes to bromine. [1] [3] Bromic acid and bromates are powerful oxidizing agents and are common ingredients in Belousov ...
Bromous acid is a product of the Belousov–Zhabotinsky reaction resulting from the combination of potassium bromate, cerium(IV) sulfate, propanedioic acid and citric acid in dilute sulfuric acid. Bromous acid is an intermediate stage of the reaction between bromate ion (BrO − 3) and bromine (Br −): [5] [6] BrO − 3 + 2 Br − → HBrO 2 ...
Hydrogen bromide, which is a diatomic molecule, takes on salt-like properties upon contact with water to give an ionic solution called hydrobromic acid. The process is often described simplistically as involving formation of the hydronium salt of bromide: HBr + H 2 O → H 3 O + + Br −
Hydrobromic acid forms an azeotrope with boiling point 124.3 °C at 47.63 g HBr per 100 g solution; ... Bromic acid is a strong acid. ... For example, in the presence ...
For example, acetic acid is a weak acid which has a = 1.75 x 10 −5. Its conjugate base is the acetate ion with K b = 10 −14 / K a = 5.7 x 10 −10 (from the relationship K a × K b = 10 −14 ), which certainly does not correspond to a strong base.