enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fractional factorial design - Wikipedia

    en.wikipedia.org/wiki/Fractional_factorial_design

    The results of that example may be used to simulate a fractional factorial experiment using a half-fraction of the original 2 4 = 16 run design. The table shows the 2 4 - 1 = 8 run half-fraction experiment design and the resulting filtration rate, extracted from the table for the full 16 run factorial experiment .

  3. Yates analysis - Wikipedia

    en.wikipedia.org/wiki/Yates_Analysis

    A full factorial design contains all possible combinations of low/high levels for all the factors. A fractional factorial design contains a carefully chosen subset of these combinations. The criterion for choosing the subsets is discussed in detail in the fractional factorial designs article. Formalized by Frank Yates, a Yates analysis exploits ...

  4. Aliasing (factorial experiments) - Wikipedia

    en.wikipedia.org/wiki/Aliasing_(factorial...

    A fractional factorial design is said to have resolution if every -factor effect [note 4] is unaliased with every effect having fewer than factors. For example, a design has resolution R = 3 {\displaystyle R=3} if main effects are unaliased with each other (taking p = 1 ) {\displaystyle p=1)} , though it allows main effects to be aliased with ...

  5. Orthogonal array - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_Array

    An orthogonal array can be used to design a fractional factorial experiment. The columns represent the various factors and the entries are the levels at which the factors are observed. An experimental run is a row of the orthogonal array, that is, a specific combination of factor levels.

  6. Plackett–Burman design - Wikipedia

    en.wikipedia.org/wiki/Plackett–Burman_design

    If N is a power of 2, however, the resulting design is identical to a fractional factorial design, so Plackett–Burman designs are mostly used when N is a multiple of 4 but not a power of 2 (i.e. N = 12, 20, 24, 28, 36 …). [3]

  7. Response surface methodology - Wikipedia

    en.wikipedia.org/wiki/Response_surface_methodology

    An easy way to estimate a first-degree polynomial model is to use a factorial experiment or a fractional factorial design.This is sufficient to determine which explanatory variables affect the response variable(s) of interest.

  8. Box–Behnken design - Wikipedia

    en.wikipedia.org/wiki/Box–Behnken_design

    The design with 7 factors was found first while looking for a design having the desired property concerning estimation variance, and then similar designs were found for other numbers of factors. Each design can be thought of as a combination of a two-level (full or fractional) factorial design with an incomplete block design. In each block, a ...

  9. Factorial experiment - Wikipedia

    en.wikipedia.org/wiki/Factorial_experiment

    Designed experiments with full factorial design (left), response surface with second-degree polynomial (right) In statistics, a full factorial experiment is an experiment whose design consists of two or more factors, each with discrete possible values or "levels", and whose experimental units take on all possible combinations of these levels across all such factors.