Search results
Results from the WOW.Com Content Network
In C, strings are normally represented as a character array rather than an actual string data type. The fact a string is really an array of characters means that referring to a string would mean referring to the first element in an array. Hence in C, the following is a legitimate example of brace notation:
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it. The figure on the right is the suffix tree for the strings "ABAB", "BABA" and "ABBA", padded with unique string ...
For function that manipulate strings, modern object-oriented languages, like C# and Java have immutable strings and return a copy (in newly allocated dynamic memory), while others, like C manipulate the original string unless the programmer copies data to a new string.
The Luhn mod N algorithm generates a check digit (more precisely, a check character) within the same range of valid characters as the input string. For example, if the algorithm is applied to a string of lower-case letters (a to z), the check character will also be a lower-case letter. Apart from this distinction, it resembles very closely the ...
Given the suffix array and the LCP array of a string =,, … $ of length +, its suffix tree can be constructed in () time based on the following idea: Start with the partial suffix tree for the lexicographically smallest suffix and repeatedly insert the other suffixes in the order given by the suffix array.
is how one would use Fortran to create arrays from the even and odd entries of an array. Another common use of vectorized indices is a filtering operation. Another common use of vectorized indices is a filtering operation.
In computer science, a literal is a textual representation (notation) of a value as it is written in source code. [1] [2] Almost all programming languages have notations for atomic values such as integers, floating-point numbers, and strings, and usually for Booleans and characters; some also have notations for elements of enumerated types and compound values such as arrays, records, and objects.
The similarity of two strings and is determined by this formula: twice the number of matching characters divided by the total number of characters of both strings. The matching characters are defined as some longest common substring [3] plus recursively the number of matching characters in the non-matching regions on both sides of the longest common substring: [2] [4]