Ads
related to: lorentz gauge and coulomb pressure scalethomasnet.com has been visited by 100K+ users in the past month
Search results
Results from the WOW.Com Content Network
The Lorenz gauge hence contradicted Maxwell's original derivation of the EM wave equation by introducing a retardation effect to the Coulomb force and bringing it inside the EM wave equation alongside the time varying electric field, which was introduced in Lorenz's paper "On the identity of the vibrations of light with electrical currents".
The Coulomb gauge (also known as the transverse gauge) is used in quantum chemistry and condensed matter physics and is defined by the gauge condition (more precisely, gauge fixing condition) (,) =. It is particularly useful for "semi-classical" calculations in quantum mechanics, in which the vector potential is quantized but the Coulomb ...
Position vectors r and r′ used in the calculation. The starting point is Maxwell's equations in the potential formulation using the Lorenz gauge: =, = where φ(r, t) is the electric potential and A(r, t) is the magnetic vector potential, for an arbitrary source of charge density ρ(r, t) and current density J(r, t), and is the D'Alembert operator. [2]
Choosing the Coulomb gauge, for which ∇⋅A = 0, makes A into a transverse field. The Fourier expansion of the vector potential enclosed in a finite cubic box of volume V = L 3 is then
The gauge-fixed potentials still have a gauge freedom under all gauge transformations that leave the gauge fixing equations invariant. Inspection of the potential equations suggests two natural choices. In the Coulomb gauge, we impose ∇ ⋅ A = 0, which is mostly used in the case of magneto statics when we can neglect the c −2 ∂ 2 A/∂t ...
Using the 4-potential in the Lorenz gauge, an alternative manifestly-covariant formulation can be found in a single equation (a generalization of an equation due to Bernhard Riemann by Arnold Sommerfeld, known as the Riemann–Sommerfeld equation, [15] or the covariant form of the Maxwell equations [16]):
The Lorenz gauge condition is a Lorentz-invariant gauge condition. (This can be contrasted with other gauge conditions such as the Coulomb gauge , which if it holds in one inertial frame will generally not hold in any other.)
There is gauge freedom in A in that of the three forms in this decomposition, only the coexact form has any effect on the electromagnetic tensor F = d A {\displaystyle F=dA} . Exact forms are closed, as are harmonic forms over an appropriate domain, so d d α = 0 {\displaystyle dd\alpha =0} and d γ = 0 {\displaystyle d\gamma =0} , always.
Ads
related to: lorentz gauge and coulomb pressure scalethomasnet.com has been visited by 100K+ users in the past month