Search results
Results from the WOW.Com Content Network
Chromium(III) hydroxide is a gelatinous green inorganic compound with the chemical formula Cr(OH) 3. It is a polymer with an undefined structure and low solubility. It is amphoteric, dissolving in both strong alkalis and strong acids. [2] In alkali: Cr(OH) 3 + OH − → CrO − 2 + 2 H 2 O In acid: Cr(OH) 3 (OH 2) 3 + 3 H + → Cr(OH 2) 6 3+
Chromium(III) hydroxide (Cr(OH) 3) is amphoteric, dissolving in acidic solutions to form [Cr(H 2 O) 6] 3+, and in basic solutions to form [Cr(OH) 6] 3−. It is dehydrated by heating to form the green chromium(III) oxide (Cr 2 O 3), a stable oxide with a crystal structure identical to that of corundum. [6]
Chromium(III) oxide is amphoteric. Although insoluble in water, it reacts with acid to produce salts of hydrated chromium ions such as [Cr(H 2 O) 6] 3+. [10] It is also attacked by concentrated alkali to yield salts of [Cr(OH) 6] 3−. When heated with finely divided carbon or aluminium, it is reduced to chromium metal: Cr 2 O 3 + 2 Al → 2 Cr ...
Chromium(III) hydroxide (Cr(OH) 3) is amphoteric, dissolving in acidic solutions to form [Cr(H 2 O) 6] 3+, and in basic solutions to form [Cr(OH) 6] 3−. It is dehydrated by heating to form the green chromium(III) oxide (Cr 2 O 3), a stable oxide with a crystal structure identical to that of corundum. [21]
The water molecule is amphoteric in aqueous solution. It can either gain a proton to form a hydronium ion H 3 O +, or else lose a proton to form a hydroxide ion OH −. [5] Another possibility is the molecular autoionization reaction between two water molecules, in which one water molecule acts as an acid and another as a base.
In acid solution the aquated Cr 3+ ion is produced. Cr 2 O 2− 7 + 14 H + + 6 e − → 2 Cr 3+ + 7 H 2 O ε 0 = 1.33 V. In alkaline solution chromium(III) hydroxide is produced. The redox potential shows that chromates are weaker oxidizing agent in alkaline solution than in acid solution. [6] CrO 2− 4 + 4 H 2 O + 3 e − → Cr(OH) 3 + 5 OH −
An oxide is a chemical compound in which one or more oxygen atoms combined with another element, such as H 2 O or CO 2.Based on their acid-base characteristics, oxides can be classified into four categories: acidic oxides, basic oxides, and amphoteric oxides and neutral oxides.
Beryllium hydroxide Be(OH) 2 is amphoteric. [16] The hydroxide itself is insoluble in water, with a solubility product log K* sp of −11.7. Addition of acid gives soluble hydrolysis products, including the trimeric ion [Be 3 (OH) 3 (H 2 O) 6] 3+, which has OH groups bridging between pairs of beryllium ions making a 6-membered ring. [17]