enow.com Web Search

  1. Ad

    related to: hyperbolic geometry theorems and properties examples in real life

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Compared to Euclidean geometry, hyperbolic geometry presents many difficulties for a coordinate system: the angle sum of a quadrilateral is always less than 360°; there are no equidistant lines, so a proper rectangle would need to be enclosed by two lines and two hypercycles; parallel-transporting a line segment around a quadrilateral causes ...

  3. Constructions in hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Constructions_in...

    Algebraically, hyperbolic and spherical geometry have the same structure. [4] This allows us to apply concepts and theorems to one geometry to the other. [4] Applying hyperbolic geometry to spherical geometry can make it easier to understand because spheres are much more concrete, which then makes spherical geometry easier to conceptualize.

  4. Hyperbolic triangle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_triangle

    In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called sides or edges and three points called angles or vertices . Just as in the Euclidean case, three points of a hyperbolic space of an arbitrary dimension always lie on the same plane.

  5. Hyperbolic space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_space

    There are many more metric properties of hyperbolic space that differentiate it from Euclidean space. Some can be generalised to the setting of Gromov-hyperbolic spaces, which is a generalisation of the notion of negative curvature to general metric spaces using only the large-scale properties. A finer notion is that of a CAT(−1)-space.

  6. Hyperbolic law of cosines - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_law_of_cosines

    In hyperbolic geometry, the "law of cosines" is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar law of cosines from plane trigonometry, or the spherical law of cosines in spherical trigonometry. [1] It can also be related to the relativistic velocity addition formula. [2] [3]

  7. Hyperboloid - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid

    In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes.A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.

  8. Hyperbolic angle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_angle

    The curve represents xy = 1. A hyperbolic angle has magnitude equal to the area of the corresponding hyperbolic sector, which is in standard position if a = 1. In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane.

  9. Category:Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Category:Hyperbolic_geometry

    Hyperbolic 3-manifold; Hyperbolic coordinates; Hyperbolic Dehn surgery; Hyperbolic functions; Hyperbolic group; Hyperbolic law of cosines; Hyperbolic manifold; Hyperbolic metric space; Hyperbolic motion; Hyperbolic space; Hyperbolic tree; Hyperbolic volume; Hyperbolization theorem; Hyperboloid model; Hypercycle (geometry) HyperRogue

  1. Ad

    related to: hyperbolic geometry theorems and properties examples in real life