Search results
Results from the WOW.Com Content Network
The mathematics of Egypt, Mesopotamia, China, India, and Islam : a sourcebook. Princeton: Princeton University Press. ISBN 9780691114859. Schwartzman, Steven (1994). "remainder (noun)". The words of mathematics : an etymological dictionary of mathematical terms used in english. Washington: Mathematical Association of America. ISBN 9780883855119.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
This is the form of the remainder term mentioned after the actual statement of Taylor's theorem with remainder in the mean value form. The Lagrange form of the remainder is found by choosing G ( t ) = ( x − t ) k + 1 {\displaystyle G(t)=(x-t)^{k+1}} and the Cauchy form by choosing G ( t ) = t − a {\displaystyle G(t)=t-a} .
This following list features abbreviated names of mathematical functions, function-like operators and other mathematical terminology. This list is limited to abbreviations of two or more letters (excluding number sets).
In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder ...
College football was dominated by flags on Saturday. Michigan, North Carolina State and Florida celebrated road wins by displaying flags on the logos in the middle of their rivals' stadiums.
Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.