enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electrophilic aromatic directing groups - Wikipedia

    en.wikipedia.org/wiki/Electrophilic_aromatic...

    An electron donating group (EDG) or electron releasing group (ERG, Z in structural formulas) is an atom or functional group that donates some of its electron density into a conjugated π system via resonance (mesomerism) or inductive effects (or induction)—called +M or +I effects, respectively—thus making the π system more nucleophilic.

  3. Nitro compound - Wikipedia

    en.wikipedia.org/wiki/Nitro_compound

    The nitro group is one of the most common explosophores (functional group that makes a compound explosive) used globally. The nitro group is also strongly electron-withdrawing. Because of this property, C−H bonds alpha (adjacent) to the nitro group can be acidic. For similar reasons, the presence of nitro groups in aromatic compounds retards ...

  4. Electron-withdrawing group - Wikipedia

    en.wikipedia.org/wiki/Electron-withdrawing_group

    An electron-withdrawing group (EWG) is a group or atom that has the ability to draw electron density toward itself and away from other adjacent atoms. [1] This electron density transfer is often achieved by resonance or inductive effects.

  5. Electronic effect - Wikipedia

    en.wikipedia.org/wiki/Electronic_effect

    When this center is an electron rich carbanion or an alkoxide anion, the presence of the electron-withdrawing substituent has a stabilizing effect. Similarly, an electron-releasing group (ERG) or electron-donating group (EDG) releases electrons into a reaction center and as such stabilizes electron deficient carbocations.

  6. Nucleophilic aromatic substitution - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_aromatic...

    The resulting intermediate, named the Meisenheimer complex (2a), the ipso carbon is temporarily bonded to the hydroxyl group. This Meisenheimer complex is extra stabilized by the additional electron-withdrawing nitro group (2b). In order to return to a lower energy state, either the hydroxyl group leaves, or the chloride leaves.

  7. Electrophilic aromatic substitution - Wikipedia

    en.wikipedia.org/wiki/Electrophilic_aromatic...

    Additionally, since the substituted carbon is already electron-poor, any structure having a resonance contributor in which there is a positive charge on the carbon bearing the electron-withdrawing group (i.e., ortho or para attack) is less stable than the others.

  8. Mesomeric effect - Wikipedia

    en.wikipedia.org/wiki/Mesomeric_effect

    The mesomeric effect is negative (–M) when the substituent is an electron-withdrawing group, and the effect is positive (+M) when the substituent is an electron donating group. Below are two examples of the +M and –M effect. Additionally, the functional groups that contribute to each type of resonance are given below.

  9. Inductive effect - Wikipedia

    en.wikipedia.org/wiki/Inductive_effect

    In Organic chemistry, the inductive effect in a molecule is a local change in the electron density due to electron-withdrawing or electron-donating groups elsewhere in the molecule, resulting in a permanent dipole in a bond. [1] It is present in a σ (sigma) bond, unlike the electromeric effect which is present in a π (pi) bond.