enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. FERET database - Wikipedia

    en.wikipedia.org/wiki/FERET_database

    The Facial Recognition Technology (FERET) database is a dataset used for facial recognition system evaluation as part of the Face Recognition Technology (FERET) program.It was first established in 1993 under a collaborative effort between Harry Wechsler at George Mason University and Jonathon Phillips at the Army Research Laboratory in Adelphi, Maryland.

  3. Visage SDK - Wikipedia

    en.wikipedia.org/wiki/Visage_SDK

    Face Recognition is used to identify or verify a person from a digital image or a video source using a pre-stored facial data. Visage SDK's face recognition algorithms can measure similarities between people and recognize a person’s identity [citation needed] from a frontal facial image by comparing it to pre-stored faces.

  4. Fawkes (software) - Wikipedia

    en.wikipedia.org/wiki/Fawkes_(software)

    Facial recognition works by pinpointing unique dimensions of facial features, which are then rendered as a vector graphic image of the face. Fawkes is a facial image cloaking software created by the SAND (Security, Algorithms, Networking and Data) Laboratory of the University of Chicago . [ 1 ]

  5. Facial recognition system - Wikipedia

    en.wikipedia.org/wiki/Facial_recognition_system

    Facial recognition software at a US airport Automatic ticket gate with face recognition system in Osaka Metro Morinomiya Station. A facial recognition system [1] is a technology potentially capable of matching a human face from a digital image or a video frame against a database of faces.

  6. Face Recognition Vendor Test - Wikipedia

    en.wikipedia.org/wiki/Face_Recognition_Vendor_Test

    The FRGC was a separate algorithm development project designed to promote and advance face recognition technology that supports existing face recognition efforts in the U.S. Government. One of the objectives of the FRGC was to develop face recognition algorithms capable of performance an order of magnitude better than FRVT 2002.

  7. FaceNet - Wikipedia

    en.wikipedia.org/wiki/FaceNet

    FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]

  8. DeepFace - Wikipedia

    en.wikipedia.org/wiki/DeepFace

    DeepFace is a deep learning facial recognition system created by a research group at Facebook.It identifies human faces in digital images. The program employs a nine-layer neural network with over 120 million connection weights and was trained on four million images uploaded by Facebook users.

  9. Face detection - Wikipedia

    en.wikipedia.org/wiki/Face_detection

    Face detection is gaining the interest of marketers. A webcam can be integrated into a television and detect any face that walks by. The system then calculates the race, gender, and age range of the face. Once the information is collected, a series of advertisements can be played that is specific toward the detected race/gender/age.