enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pruning (artificial neural network) - Wikipedia

    en.wikipedia.org/wiki/Pruning_(artificial_neural...

    Pruning is the practice of removing parameters (which may entail removing individual parameters, or parameters in groups such as by neurons) from an existing artificial neural networks. [1] The goal of this process is to maintain accuracy of the network while increasing its efficiency .

  3. Decision tree pruning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_pruning

    Pre-pruning procedures prevent a complete induction of the training set by replacing a stop criterion in the induction algorithm (e.g. max. Tree depth or information gain (Attr)> minGain). Pre-pruning methods are considered to be more efficient because they do not induce an entire set, but rather trees remain small from the start.

  4. Neuroevolution of augmenting topologies - Wikipedia

    en.wikipedia.org/wiki/Neuroevolution_of...

    NeuroEvolution of Augmenting Topologies (NEAT) is a genetic algorithm (GA) for the generation of evolving artificial neural networks (a neuroevolution technique) developed by Kenneth Stanley and Risto Miikkulainen in 2002 while at The University of Texas at Austin. It alters both the weighting parameters and structures of networks, attempting ...

  5. SqueezeNet - Wikipedia

    en.wikipedia.org/wiki/SqueezeNet

    Model compression (e.g. quantization and pruning of model parameters) can be applied to a deep neural network after it has been trained. [19] In the SqueezeNet paper, the authors demonstrated that a model compression technique called Deep Compression can be applied to SqueezeNet to further reduce the size of the parameter file from 5 MB to 500 ...

  6. Category:Artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Category:Artificial_neural...

    Pruning (artificial neural network) Pulse-coupled networks; Q. Quantum neural network; Quickprop; R. Radial basis function; Random neural network; Rectifier (neural ...

  7. Grafting (decision trees) - Wikipedia

    en.wikipedia.org/wiki/Grafting_(decision_trees)

    Pruning and Grafting are complementary methods to improve the decision tree in supporting the decision. Pruning allows cutting parts of decision trees to give more clarity and Grafting adds nodes to the decision trees to increase the predictive accuracy. To achieve grafting new branches can be added in the place of a single leaf or graft within ...

  8. Pruning (neural networks) - Wikipedia

    en.wikipedia.org/?title=Pruning_(neural_networks...

    What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code

  9. Double descent - Wikipedia

    en.wikipedia.org/wiki/Double_descent

    Xiangyu Chang; Yingcong Li; Samet Oymak; Christos Thrampoulidis (2021). "Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence. 35 (8). arXiv: 2012.08749.