Search results
Results from the WOW.Com Content Network
The kinetic theory of gases deals not only with gases in thermodynamic equilibrium, but also very importantly with gases not in thermodynamic equilibrium. This means using Kinetic Theory to consider what are known as "transport properties", such as viscosity, thermal conductivity, mass diffusivity and thermal diffusion.
In other words, the configuration of particle A in state 1 and particle B in state 2 is different from the case in which particle B is in state 1 and particle A is in state 2. This assumption leads to the proper (Boltzmann) statistics of particles in the energy states, but yields non-physical results for the entropy, as embodied in the Gibbs ...
Kinetic theory may refer to: Kinetic theory of matter: A general account of the properties of matter, including solids liquids and gases, based around the idea that heat or temperature is a manifestation of atoms and molecules in constant agitation. Kinetic theory of gases, an account of gas properties in terms of motion and interaction of ...
The general equation can then be written as [6] = + + (),. where the "force" term corresponds to the forces exerted on the particles by an external influence (not by the particles themselves), the "diff" term represents the diffusion of particles, and "coll" is the collision term – accounting for the forces acting between particles in collisions.
The microscopic explanation for this is based on kinetic theory and the random motion of molecules. However, it is simpler to describe the process in terms of chemical potentials: For a given temperature, a molecule has a higher chemical potential in a higher-concentration area and a lower chemical potential in a low concentration area.
The kinetic isotope effect is the difference in the rate of a chemical reaction when an atom in one of the reactants is replaced by one of its isotopes. Chemical kinetics provides information on residence time and heat transfer in a chemical reactor in chemical engineering and the molar mass distribution in polymer chemistry.
From the kinetic theory of gases, [20] thermal conductivity of principal carrier i (p, e, f and ph) is =,, where n i is the carrier density and the heat capacity is per carrier, u i is the carrier speed and λ i is the mean free path (distance traveled by carrier before an scattering event). Thus, the larger the carrier density, heat capacity ...
Thermal physics, generally speaking, is the study of the statistical nature of physical systems from an energetic perspective. Starting with the basics of heat and temperature, thermal physics analyzes the first law of thermodynamics and second law of thermodynamics from the statistical perspective, in terms of the number of microstates corresponding to a given macrostate.