enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    The specific impulse of a rocket can be defined in terms of thrust per unit mass flow of propellant. This is an equally valid (and in some ways somewhat simpler) way of defining the effectiveness of a rocket propellant. For a rocket, the specific impulse defined in this way is simply the effective exhaust velocity relative to the rocket, v e ...

  3. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  4. Characteristic velocity - Wikipedia

    en.wikipedia.org/wiki/Characteristic_velocity

    Specific impulse and effective exhaust velocity are dependent on the nozzle design unlike the characteristic velocity, explaining why C-star is an important value when comparing different propulsion system efficiencies. c* can be useful when comparing actual combustion performance to theoretical performance in order to determine how completely ...

  5. Ammonium perchlorate composite propellant - Wikipedia

    en.wikipedia.org/wiki/Ammonium_perchlorate...

    Ammonium perchlorate composite propellant is typically for aerospace rocket propulsion where simplicity and reliability are desired and specific impulses (depending on the composition and operating pressure) of 180–260 s (1.8–2.5 km/s) are adequate.

  6. Delta-v - Wikipedia

    en.wikipedia.org/wiki/Delta-v

    Delta-v (also known as "change in velocity"), symbolized as and pronounced /dɛltə viː/, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver.

  7. Liquid rocket propellant - Wikipedia

    en.wikipedia.org/wiki/Liquid_rocket_propellant

    The highest-specific-impulse chemistry ever test-fired in a rocket engine was lithium and fluorine, with hydrogen added to improve the exhaust thermodynamics (all propellants had to be kept in their own tanks, making this a tripropellant). The combination delivered 542 s specific impulse in vacuum, equivalent to an exhaust velocity of 5320 m/s.

  8. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    In the case of rockets, the impulse imparted can be normalized by unit of propellant expended, to create a performance parameter, specific impulse. This fact can be used to derive the Tsiolkovsky rocket equation , which relates the vehicle's propulsive change in velocity to the engine's specific impulse (or nozzle exhaust velocity) and the ...

  9. Relativistic rocket - Wikipedia

    en.wikipedia.org/wiki/Relativistic_rocket

    It is clear from the above calculations that a relativistic rocket would likely need to be antimatter-fired. [original research?] Other antimatter rockets in addition to the photon rocket that can provide a 0.6c specific impulse (studied for basic hydrogen-antihydrogen annihilation, no ionization, no recycling of the radiation [3]) needed for interstellar flight include the "beam core" pion ...