enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    The standard hydrogen electrode (SHE), with [ H +] = 1 M works thus at a pH = 0. At pH = 7, when [ H +] = 10 −7 M, the reduction potential of H + differs from zero because it depends on pH. Solving the Nernst equation for the half-reaction of reduction of two protons into hydrogen gas gives: 2 H + + 2 e − ⇌ H 2

  3. Nernst equation - Wikipedia

    en.wikipedia.org/wiki/Nernst_equation

    In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...

  4. Standard electrode potential (data page) - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode...

    The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode (SHE), at: Temperature 298.15 K (25.00 °C; 77.00 °F); Effective concentration (activity) 1 mol/L for each aqueous or amalgamated (mercury-alloyed) species; Unit activity for each solvent and pure solid or liquid species; and

  5. Electrolysis of water - Wikipedia

    en.wikipedia.org/wiki/Electrolysis_of_water

    The vertical scale is the electrode potential of hydrogen or non-interacting electrode relative to an SHE electrode, the horizontal scale is the pH of the electrolyte (otherwise non-interacting). Neglecting overpotential , above the top line the equilibrium condition is oxygen gas, and oxygen will bubble off of the electrode until equilibrium ...

  6. Reduction potential - Wikipedia

    en.wikipedia.org/wiki/Reduction_potential

    In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...

  7. Standard hydrogen electrode - Wikipedia

    en.wikipedia.org/wiki/Standard_hydrogen_electrode

    During the early development of electrochemistry, researchers used the normal hydrogen electrode as their standard for zero potential. This was convenient because it could actually be constructed by "[immersing] a platinum electrode into a solution of 1 N strong acid and [bubbling] hydrogen gas through the solution at about 1 atm pressure".

  8. Heterogeneous water oxidation - Wikipedia

    en.wikipedia.org/wiki/Heterogeneous_Water_Oxidation

    Water splitting can be done at higher pH values as well however the standard potentials will vary according to the Nernst equation and therefore shift by -59 mV for each pH unit increase. However, the total cell potential (difference between oxidation and reduction half cell potentials) will remain 1.23 V.

  9. Standard electrode potential - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode_potential

    Bipolar electrochemistry scheme. In electrochemistry, standard electrode potential, or , is a measure of the reducing power of any element or compound.The IUPAC "Gold Book" defines it as; "the value of the standard emf (electromotive force) of a cell in which molecular hydrogen under standard pressure is oxidized to solvated protons at the left-hand electrode".