enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    If a is not divisible by p, that is, if a is coprime to p, then Fermat's little theorem is equivalent to the statement that a p − 11 is an integer multiple of p, or in symbols: [1] [2] (). For example, if a = 2 and p = 7 , then 2 6 = 64 , and 64 − 1 = 63 = 7 × 9 is a multiple of 7 .

  3. Proofs of Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_Fermat's_little...

    Some of the proofs of Fermat's little theorem given below depend on two simplifications.. The first is that we may assume that a is in the range 0 ≤ a ≤ p − 1.This is a simple consequence of the laws of modular arithmetic; we are simply saying that we may first reduce a modulo p.

  4. Pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Pseudoprime

    Fermat's little theorem states that if p is prime and a is coprime to p, then a p−11 is divisible by p. For an integer a > 1, if a composite integer x divides a x−11, then x is called a Fermat pseudoprime to base a. It follows that if x is a Fermat pseudoprime to base a, then x is coprime to a. Some sources use variations of this ...

  5. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem gives only a necessary condition for extreme function values, as some stationary points are inflection points (not a maximum or minimum). The function's second derivative , if it exists, can sometimes be used to determine whether a stationary point is a maximum or minimum.

  6. Fermat pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Fermat_pseudoprime

    For example, 1093 2 = 1194649 is a Fermat pseudoprime to base 2, and 11 2 = 121 is a Fermat pseudoprime to base 3. The number of the values of b for n are (For n prime, the number of the values of b must be n − 1, since all b satisfy the Fermat little theorem )

  7. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    Fermat's Last Theorem states that no three positive integers (a, b, c) can satisfy the equation a n + b n = c n for any integer value of n greater than 2. (For n equal to 1, the equation is a linear equation and has a solution for every possible a and b.

  8. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation a n + b n = c n for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. [1]

  9. Wiles's proof of Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Wiles's_proof_of_Fermat's...

    Fermat's Last Theorem, formulated in 1637, states that no three positive integers a, b, and c can satisfy the equation + = if n is an integer greater than two (n > 2).. Over time, this simple assertion became one of the most famous unproved claims in mathematics.