Search results
Results from the WOW.Com Content Network
The truncated cube and the truncated octahedron are Archimedean solids with 36 edges. [9] The number of domino tilings of a 4×4 checkerboard is 36. [10] Since it is possible to find sequences of 36 consecutive integers such that each inner member shares a factor with either the first or the last member, 36 is an Erdős–Woods number. [11]
A factorial x! is the product of all numbers from 1 to x. The first: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 (sequence A000142 in the OEIS). 0! = 1 is sometimes included. A k-smooth number (for a natural number k) has its prime factors ≤ k (so it is also j-smooth for any j > k).
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
Highly composite numbers: 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, ... A positive integer with more divisors than any smaller positive integer. A002182: Superior highly composite numbers: 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, ... A positive integer n for which there is an e > 0 such that d(n) / n e ≥ d(k) / k e for ...
A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem , there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes .
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
Such a number is a divisor of (⌈ / ⌉,,). The regular numbers are also called 5-smooth, indicating that their greatest prime factor is at most 5. [2] More generally, a k-smooth number is a number whose greatest prime factor is at most k. [3] The first few regular numbers are [2]
Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5. As you would start on the number you are multiplying, when you multiply by 0, you stay on 0 (0 is external and so the arrows have no effect on 0, otherwise 0 is used as a link to create a perpetual cycle).