Search results
Results from the WOW.Com Content Network
In chemistry, charge-transfer (CT) complex, or electron donor-acceptor complex, describes a type of supramolecular assembly of two or more molecules or ions. The assembly consists of two molecules that self-attract through electrostatic forces, i.e., one has at least partial negative charge and the partner has partial positive charge, referred ...
Fig. 1. The parabolas of outer-sphere reorganisation energy of the system two spheres in a solvent. Parabola i: the charge on the first, transfer to the second, parabola f: the charge on the second, transfer to the first. The abscissa is the transferred amount of charge Δe or the induced polarization P, the ordinate the Gibbs free energy.
They appear in the Butler–Volmer equation and related expressions. The symmetry factor and the charge transfer coefficient are dimensionless. [1] According to an IUPAC definition, [2] for a reaction with a single rate-determining step, the charge transfer coefficient for a cathodic reaction (the cathodic transfer coefficient, α c) is defined as:
Spartan is a molecular modelling and computational chemistry application from Wavefunction. [2] It contains code for molecular mechanics, semi-empirical methods, ab initio models, [3] density functional models, [4] post-Hartree–Fock models, [5] and thermochemical recipes including G3(MP2) [6] and T1. [7]
This equation is characteristic of incoherent hopping transport, which takes place at low concentrations, where the limiting factor is the exponential decay of hopping probability with inter-site distance. [4] Sometimes this relation is expressed for conductivity, rather than mobility:
Arrow pushing or electron pushing is a technique used to describe the progression of organic chemistry reaction mechanisms. [1] It was first developed by Sir Robert Robinson.In using arrow pushing, "curved arrows" or "curly arrows" are drawn on the structural formulae of reactants in a chemical equation to show the reaction mechanism.
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.
This method was first developed by Benesi and Hildebrand in 1949, [2] as a means to explain a phenomenon where iodine changes color in various aromatic solvents. This was attributed to the formation of an iodine-solvent complex through acid-base interactions, leading to the observed shifts in the absorption spectrum.