enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation. There are many expansions in terms of special functions for the Green's function. In the case of a boundary put at infinity with the boundary condition ...

  3. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    Green's functions are also useful tools in solving wave equations and diffusion equations. In quantum mechanics, Green's function of the Hamiltonian is a key concept with important links to the concept of density of states. The Green's function as used in physics is usually defined with the opposite sign, instead.

  4. Green's function (many-body theory) - Wikipedia

    en.wikipedia.org/wiki/Green's_function_(many-body...

    In many-body theory, the term Green's function (or Green function) is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators. The name comes from the Green's functions used to solve inhomogeneous differential equations, to which they are loosely ...

  5. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    See Green's functions for the Laplacian or [2] for a detailed argument, with an alternative. It can be further verified that the above identity also applies when ψ is a solution to the Helmholtz equation or wave equation and G is the appropriate Green's function.

  6. Multiscale Green's function - Wikipedia

    en.wikipedia.org/wiki/Multiscale_Green's_function

    Multiscale Green's function (MSGF) is a generalized and extended version of the classical Green's function (GF) technique [1] for solving mathematical equations. The main application of the MSGF technique is in modeling of nanomaterials. [2] These materials are very small – of the size of few nanometers.

  7. GW approximation - Wikipedia

    en.wikipedia.org/wiki/GW_approximation

    The GW approximation (GWA) is an approximation made in order to calculate the self-energy of a many-body system of electrons. [1] [2] [3] The approximation is that the expansion of the self-energy Σ in terms of the single particle Green's function G and the screened Coulomb interaction W (in units of =)

  8. Numerical analytic continuation - Wikipedia

    en.wikipedia.org/wiki/Numerical_Analytic...

    In many-body physics, the problem of analytic continuation is that of numerically extracting the spectral density of a Green function given its values on the imaginary axis. It is a necessary post-processing step for calculating dynamical properties of physical systems from Quantum Monte Carlo simulations, which often compute Green function ...

  9. Dirichlet problem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_problem

    is the derivative of the Green's function along the inward-pointing unit normal vector ^. The integration is performed on the boundary, with measure d s {\displaystyle ds} . The function ν ( s ) {\displaystyle \nu (s)} is given by the unique solution to the Fredholm integral equation of the second kind,