Search results
Results from the WOW.Com Content Network
While the circle has a relatively low maximum packing density, it does not have the lowest possible, even among centrally-symmetric convex shapes: the smoothed octagon has a packing density of about 0.902414, the smallest known for centrally-symmetric convex shapes and conjectured to be the smallest possible. [3]
Circle packing in a circle is a two-dimensional packing problem with the ... Of these, solutions for n = 2, 3, 4, 7, 19, and 37 achieve a packing density greater than ...
The hexagonal packing of circles on a 2-dimensional Euclidean plane. These problems are mathematically distinct from the ideas in the circle packing theorem.The related circle packing problem deals with packing circles, possibly of different sizes, on a surface, for instance the plane or a sphere.
Circle packing in a square is a packing problem in recreational mathematics, where the aim is to pack n unit circles into the smallest possible square. Equivalently, the problem is to arrange n points in a unit square aiming to get the greatest minimal separation, d n , between points. [ 1 ]
The optimal packing density or packing constant associated with a supply collection is the supremum of upper densities obtained by packings that are subcollections of the supply collection. If the supply collection consists of convex bodies of bounded diameter, there exists a packing whose packing density is equal to the packing constant, and ...
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.
Densities for > are normalised to the maximum density, those for = and are scaled to aid visibility. The sample mean of a set of N measurements z n = e i θ n {\displaystyle z_{n}=e^{i\theta _{n}}} drawn from a circular uniform distribution is defined as:
Alternatively, the shape's area could be compared to that of its bounding circle, [1] [2] its convex hull, [1] [3] or its minimum bounding box. [3] Similarly, a comparison can be made between the perimeter of the shape and that of its convex hull, [3] its bounding circle, [1] or a circle having the same area. [1]