enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 5-manifold - Wikipedia

    en.wikipedia.org/wiki/5-manifold

    This turns out to be easier than the 3- or 4-dimensional case: the 3-dimensional case is the Thurston geometrisation conjecture, and the 4-dimensional case was solved by Michael Freedman (1982) in the topological case, [5] but is a very hard unsolved problem in the smooth case. In dimension 5, the smooth classification of simply connected ...

  3. Symplectic manifold - Wikipedia

    en.wikipedia.org/wiki/Symplectic_manifold

    Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...

  4. Fundamental vector field - Wikipedia

    en.wikipedia.org/wiki/Fundamental_vector_field

    In particular, if is a smooth manifold and is a smooth vector field, one is interested in finding integral curves to . More precisely, given p ∈ M {\displaystyle p\in M} one is interested in curves γ p : R → M {\displaystyle \gamma _{p}:\mathbb {R} \to M} such that:

  5. De Rham cohomology - Wikipedia

    en.wikipedia.org/wiki/De_Rham_cohomology

    Vector field corresponding to a differential form on the punctured plane that is closed but not exact, showing that the de Rham cohomology of this space is non-trivial.. In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form ...

  6. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    Let M be a smooth manifold. A (smooth) singular k-simplex in M is defined as a smooth map from the standard simplex in R k to M. The group C k (M, Z) of singular k-chains on M is defined to be the free abelian group on the set of singular k-simplices in M. These groups, together with the boundary map, ∂, define a chain complex.

  7. Smooth structure - Wikipedia

    en.wikipedia.org/wiki/Smooth_structure

    This atlas contains every chart that is compatible with the smooth structure. There is a natural one-to-one correspondence between smooth structures and maximal smooth atlases. Thus, we may regard a smooth structure as a maximal smooth atlas and vice versa. In general, computations with the maximal atlas of a manifold are rather unwieldy.

  8. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    Theorem: Every smooth manifold admits a (non-canonical) Riemannian metric. [13] This is a fundamental result. Although much of the basic theory of Riemannian metrics can be developed using only that a smooth manifold is a locally Euclidean topological space, for this result it is necessary to use that smooth manifolds are Hausdorff and paracompact.

  9. Poisson manifold - Wikipedia

    en.wikipedia.org/wiki/Poisson_manifold

    For example, the smooth quotient of a symplectic manifold by a group acting by symplectomorphisms is a Poisson manifold, which in general is not symplectic. This situation models the case of a physical system which is invariant under symmetries : the "reduced" phase space, obtained by quotienting the original phase space by the symmetries, in ...