Search results
Results from the WOW.Com Content Network
In theoretical physics and applied mathematics, a field equation is a partial differential equation which determines the dynamics of a physical field, specifically the time evolution and spatial distribution of the field. The solutions to the equation are mathematical functions which correspond directly to the field, as functions of time and space.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The Maxwell equations in the presence of matter then become: = = where the current 3-form J still satisfies the continuity equation dJ = 0. When the fields are expressed as linear combinations (of exterior products) of basis forms θ i, =. the constitutive relation takes the form = where the field coefficient functions and the constitutive ...
In the electric and magnetic field formulation there are four equations that determine the fields for given charge and current distribution. A separate law of nature, the Lorentz force law, describes how the electric and magnetic fields act on charged particles and currents. By convention, a version of this law in the original equations by ...
The equations represent a set of four coupled multi-dimensional partial differential equations which, when solved for a system, describe the combined behavior of the electromagnetic fields. In general, the force experienced by a test charge in an electromagnetic field is given by the Lorentz force law : F = q E + q v × B . {\displaystyle ...
A field has a consistent tensorial character wherever it is defined: i.e. a field cannot be a scalar field somewhere and a vector field somewhere else. For example, the Newtonian gravitational field is a vector field: specifying its value at a point in spacetime requires three numbers, the components of the gravitational field vector at that point.
Electromagnetic (EM) fields affect the motion of electrically charged matter: due to the Lorentz force. In this way, EM fields can be detected (with applications in particle physics, and natural occurrences such as in aurorae). In relativistic form, the Lorentz force uses the field strength tensor as follows. [4]
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.