Search results
Results from the WOW.Com Content Network
Fault detection, isolation, and recovery (FDIR) is a subfield of control engineering which concerns itself with monitoring a system, identifying when a fault has occurred, and pinpointing the type of fault and its location. Two approaches can be distinguished: A direct pattern recognition of sensor readings that indicate a fault and an analysis ...
San Andreas Fault System (Banning fault, Mission Creek fault, South Pass fault, San Jacinto fault, Elsinore fault) 1300: California, United States: Dextral strike-slip: Active: 1906 San Francisco (M7.7 to 8.25), 1989 Loma Prieta (M6.9) San Ramón Fault: Chile: Thrust fault: Sawtooth Fault: Idaho, United States: Normal fault: Seattle Fault ...
Some use the term "transform fault" to describe the seismically and tectonically active portion of a fracture zone after John Tuzo Wilson's concepts first developed with respect to the Mid-Atlantic Ridge. [2] The term fracture zone has a distinct geological meaning, but it is also used more loosely in the naming of some oceanic features.
In the nominal, i.e. fault-free situation, the lower control loop operates to meet the control goals. The fault-detection (FDI) module monitors the closed-loop system to detect and isolate faults. The fault estimate is passed to the reconfiguration block, which modifies the control loop to reach the control goals in spite of the fault.
A current list of problems occurring on the network component is often kept in the form of an active alarm list such as is defined in RFC 3877, the Alarm MIB. A list of cleared faults is also maintained by most network management systems. [2] Fault management systems may use complex filtering systems to assign alarms to severity levels.
Faults that do not trigger a sustained requirement for fault isolation and fault recovery actions should not be displayed for management action. For example, lighting up a fault indicator in situations if human intervention is not required induces breakage by causing maintenance personnel to perform work when nothing is already broken.
Before detailed analysis takes place, ground rules and assumptions are usually defined and agreed to. This might include, for example: Standardized mission profile with specific fixed duration mission phases; Sources for failure rate and failure mode data; Fault detection coverage that system built-in test will realize
In order for a GPS receiver to perform RAIM or fault detection (FD) function, a minimum of five visible satellites with satisfactory geometry must be visible to it. RAIM has various kinds of implementations; one of them performs consistency checks between all position solutions obtained with various subsets of the visible satellites.