enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Momentum transfer - Wikipedia

    en.wikipedia.org/wiki/Momentum_transfer

    The momentum transfer plays an important role in the evaluation of neutron, X-ray, and electron diffraction for the investigation of condensed matter. Laue-Bragg diffraction occurs on the atomic crystal lattice, conserves the wave energy and thus is called elastic scattering, where the wave numbers final and incident particles, and , respectively, are equal and just the direction changes by a ...

  3. Wave - Wikipedia

    en.wikipedia.org/wiki/Wave

    Mechanical and electromagnetic waves transfer energy, [1] momentum, and information, but they do not transfer particles in the medium. In mathematics and electronics waves are studied as signals. [2] On the other hand, some waves have envelopes which do not move at all such as standing waves (which are fundamental to music) and hydraulic jumps.

  4. Matter wave - Wikipedia

    en.wikipedia.org/wiki/Matter_wave

    The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie (/ d ə ˈ b r ɔɪ /) in 1924, and so matter waves are also known as de Broglie waves. The de Broglie wavelength is the wavelength , λ , associated with a particle with momentum p through the Planck constant , h : λ = h p . {\displaystyle \lambda ...

  5. Electromagnetic radiation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_radiation

    EM waves carry energy, momentum, and angular momentum away from their source particle and can impart those quantities to matter with which they interact. Electromagnetic radiation is associated with those EM waves that are free to propagate themselves ("radiate") without the continuing influence of the moving charges that produced them, because ...

  6. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    The molecular transfer equations of Newton's law for fluid momentum, Fourier's law for heat, and Fick's law for mass are very similar. One can convert from one transport coefficient to another in order to compare all three different transport phenomena. [8]

  7. Mechanical wave - Wikipedia

    en.wikipedia.org/wiki/Mechanical_wave

    Mechanical waves can be produced only in media which possess elasticity and inertia. There are three types of mechanical waves: transverse waves, longitudinal waves, and surface waves. Some of the most common examples of mechanical waves are water waves, sound waves, and seismic waves. Like all waves, mechanical waves transport energy.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Electromagnetic mass - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_mass

    This leads to a paradox when changing frames: if waves are radiated in a certain direction, the device will suffer a recoil from the momentum of the fictitious fluid. Then, Poincaré performed a Lorentz boost (to first order in v/c) to the frame of the moving source. He noted that energy conservation holds in both frames, but that the law of ...