Search results
Results from the WOW.Com Content Network
A left identity element that is also a right identity element if called an identity element. The empty set is an identity element of binary union and symmetric difference , and it is also a right identity element of set subtraction :
In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if A is a subset of some set X, then () = if , and () = otherwise, where is a common notation for the indicator function.
In a size-(n + 1) set, choose a distinguished element. Each subset either contains the distinguished element or does not. If a subset contains the distinguished element, then its remaining elements are chosen from among the other n elements. By the induction hypothesis, the number of ways to do that is 2 n. If a subset does not contain the ...
These are two examples in which both the subset and the whole set are infinite, and the subset has the same cardinality (the concept that corresponds to size, that is, the number of elements, of a finite set) as the whole; such cases can run counter to one's initial intuition. The set of rational numbers is a proper subset of the set of real ...
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
The join/meet of a subset of a totally ordered set is simply the maximal/minimal element of that subset, if such an element exists. If a subset of a partially ordered set is also an (upward) directed set, then its join (if it exists) is called a directed join or directed supremum. Dually, if is a downward directed set, then its meet (if it ...
Each set of elements has a least upper bound (their "join") and a greatest lower bound (their "meet"), so that it forms a lattice, and more specifically (for partitions of a finite set) it is a geometric and supersolvable lattice. [6] [7] The partition lattice of a 4-element set has 15 elements and is depicted in the Hasse diagram on the left.
The binomial theorem is closely related to the power set. A k –elements combination from some set is another name for a k –elements subset, so the number of combinations, denoted as C(n, k) (also called binomial coefficient) is a number of subsets with k elements in a set with n elements; in other words it's the number of sets with k ...