Search results
Results from the WOW.Com Content Network
Phenylboronic acid or benzeneboronic acid, abbreviated as PhB(OH) 2 where Ph is the phenyl group C 6 H 5 - and B(OH) 2 is a boronic acid containing a phenyl substituent and two hydroxyl groups attached to boron. Phenylboronic acid is a white powder and is commonly used in organic synthesis.
Protodeboronation is a well-known undesired side reaction, and frequently associated with metal-catalysed coupling reactions that utilise boronic acids (see Suzuki reaction). [1] For a given boronic acid, the propensity to undergo protodeboronation is highly variable and dependent on various factors, such as the reaction conditions employed and ...
The mechanism of organotrifluoroborate-based Suzuki-Miyaura coupling reactions has recently been investigated in detail. The organotrifluoroborate hydrolyses to the corresponding boronic acid in situ, so a boronic acid can be used in place of an organotrifluoroborate, as long as it is added slowly and carefully. [7] [8]
[2] [3] Boronic acids, and boronic esters are common boryl groups incorporated into organic molecules through borylation reactions. [4] Boronic acids are trivalent boron-containing organic compounds that possess one alkyl substituent and two hydroxyl groups. Similarly, boronic esters possess one alkyl substituent and two ester groups.
The tert-butyloxycarbonyl protecting group or tert-butoxycarbonyl protecting group [1] (BOC group) is an acid-labile protecting group used in organic synthesis. The BOC group can be added to amines under aqueous conditions using di- tert -butyl dicarbonate in the presence of a base such as sodium hydroxide :
The general structure of a boronic acid, where R is a substituent.. A boronic acid is an organic compound related to boric acid (B(OH) 3) in which one of the three hydroxyl groups (−OH) is replaced by an alkyl or aryl group (represented by R in the general formula R−B(OH) 2). [1]
This produces 2,4,6-trichlorobenzoic acid, which can then be refluxed in thionyl chloride to form 2,4,6-trichlorobenzoyl chloride. [4] Since 2,4,6-trichlorobenzoic acid is produced as a by product of the Yamaguchi esterification process, it can be refluxed again to recreate 2,4,6-trichlorobenzoyl chloride.
A widely used peroxy acid for this reaction is meta-chloroperoxybenzoic acid (m-CPBA), due to its stability and good solubility in most organic solvents. [1] [3] The reaction is performed in inert solvents (C 6 H 14, C 6 H 6, CH 2 Cl 2, CHCl 3, CCl 4) between -10 and 60 °C with the yield of 60-80%. An illustrative example is the epoxidation of ...