Search results
Results from the WOW.Com Content Network
Protodeboronation is a well-known undesired side reaction, and frequently associated with metal-catalysed coupling reactions that utilise boronic acids (see Suzuki reaction). [1] For a given boronic acid, the propensity to undergo protodeboronation is highly variable and dependent on various factors, such as the reaction conditions employed and ...
Phenylboronic acid or benzeneboronic acid, abbreviated as PhB(OH) 2 where Ph is the phenyl group C 6 H 5 - and B(OH) 2 is a boronic acid containing a phenyl substituent and two hydroxyl groups attached to boron. Phenylboronic acid is a white powder and is commonly used in organic synthesis.
The decomposition reaction proceeds via the generation of methyl radicals. (CH 3) 3 COOC(CH 3) 3 → 2 (CH 3) 3 CO • (CH 3) 3 CO • → (CH 3) 2 CO + CH • 3 2 CH • 3 → C 2 H 6. DTBP can in principle be used in engines where oxygen is limited, since the molecule supplies both the oxidizer and the fuel. [2]
[2] [3] Boronic acids, and boronic esters are common boryl groups incorporated into organic molecules through borylation reactions. [4] Boronic acids are trivalent boron-containing organic compounds that possess one alkyl substituent and two hydroxyl groups. Similarly, boronic esters possess one alkyl substituent and two ester groups.
The general structure of a boronic acid, where R is a substituent.. A boronic acid is an organic compound related to boric acid (B(OH) 3) in which one of the three hydroxyl groups (−OH) is replaced by an alkyl or aryl group (represented by R in the general formula R−B(OH) 2). [1]
The tert-butyloxycarbonyl protecting group or tert-butoxycarbonyl protecting group [1] (BOC group) is an acid-labile protecting group used in organic synthesis. The BOC group can be added to amines under aqueous conditions using di- tert -butyl dicarbonate in the presence of a base such as sodium hydroxide :
The mechanism of organotrifluoroborate-based Suzuki-Miyaura coupling reactions has recently been investigated in detail. The organotrifluoroborate hydrolyses to the corresponding boronic acid in situ, so a boronic acid can be used in place of an organotrifluoroborate, as long as it is added slowly and carefully. [7] [8]
The Buchner–Curtius–Schlotterbeck reaction is the reaction of aldehydes or ketones with aliphatic diazoalkanes to form homologated ketones. [1] It was first described by Eduard Buchner and Theodor Curtius in 1885 [ 2 ] and later by Fritz Schlotterbeck in 1907. [ 3 ]