Search results
Results from the WOW.Com Content Network
If an airplane's altitude at time t is a(t), and the air pressure at altitude x is p(x), then (p ∘ a)(t) is the pressure around the plane at time t. Function defined on finite sets which change the order of their elements such as permutations can be composed on the same set, this being composition of permutations.
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.
In Rel the objects are sets, the morphisms are binary relations and the composition of morphisms is exactly composition of relations as defined above. The category Set of sets and functions is a subcategory of R e l {\displaystyle {\mathsf {Rel}}} where the maps X → Y {\displaystyle X\to Y} are functions f : X → Y {\displaystyle f:X\to Y} .
In computer science, function composition is an act or mechanism to combine simple functions to build more complicated ones. Like the usual composition of functions in mathematics, the result of each function is passed as the argument of the next, and the result of the last one is the result of the whole.
Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function.
The arrows or morphisms between sets A and B are the functions from A to B, and the composition of morphisms is the composition of functions. Many other categories (such as the category of groups, with group homomorphisms as arrows) add structure to the objects of the category of sets or restrict the arrows to functions of a particular kind (or ...
If f is the action of a group element on a set, then the iterated function corresponds to a free group. Most functions do not have explicit general closed-form expressions for the n-th iterate. The table below lists some [20] that do. Note that all these expressions are valid even for non-integer and negative n, as well as non-negative integer n.
In mathematics and mathematical optimization, the convex conjugate of a function is a generalization of the Legendre transformation which applies to non-convex functions. It is also known as Legendre–Fenchel transformation, Fenchel transformation, or Fenchel conjugate (after Adrien-Marie Legendre and Werner Fenchel).