Search results
Results from the WOW.Com Content Network
Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution
For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1 / 2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1 / 2 .
Unexpectedly at the time, Larman and Claude Ambrose Rogers () showed that the Busemann–Petty problem has a negative solution in dimensions at least 12, and this bound was reduced to dimensions at least 5 by several other authors.
Ladyzhenskaya's inequality; Landau–Kolmogorov inequality; Landau-Mignotte bound; Lebedev–Milin inequality; Leggett inequality; Leggett–Garg inequality; Less-than sign; Levinson's inequality; Lieb–Oxford inequality; Lieb–Thirring inequality; Littlewood's 4/3 inequality; Log sum inequality; Łojasiewicz inequality; Lubell–Yamamoto ...
In mathematics, an inequation is a statement that an inequality holds between two values. [1] [2] It is usually written in the form of a pair of expressions denoting the values in question, with a relational sign between them indicating the specific inequality relation. Some examples of inequations are:
Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality In mathematics , Jensen's inequality , named after the Danish mathematician Johan Jensen , relates the value of a convex function of an integral to the integral of the convex function.
proving the inequality. Moreover, the inequality of arithmetic and geometric means of non-negative numbers is known to be an equality if and only if all the numbers coincide, that is, in the present case, if and only if = / for =, …,.
In mathematics, the Poincaré inequality [1] is a result in the theory of Sobolev spaces, named after the French mathematician Henri Poincaré. The inequality allows one to obtain bounds on a function using bounds on its derivatives and the geometry of its domain of definition.